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I. INTRODUCTION

The purpose of this document is to define and briefly discuss coordinate
systems commonly employed at test ranges as well as to recommend procedures and
practices for the use of a global coordinate system. This document replaces
IRIG Document 151-69 (formerly 103-69)}, Global Coordinate System.

This document is primarily intended for use by individuals familiar with
the basic concepts and definitions commonly employed in geodesy. In order to
aid the reader who requires additional background information, a bibliography
of some of the standard texts on geodesy, map projections, and spherical
astronomy is provided.

This document specializes in those trajectory coordinate systems that are,
or could be, potentially applicable to data reduction tasks performed at the
various test ranges. No attempt has been made to address the subject of coor-
dinate systems in a general manner or to develop a compendium of the various
coordinate systems employed at the test ranges. General discussions on coordi-
nate systems are given in a number of standard ftexts on geodesy and are not
repeated in this document. Information on special-purpose coordinate systems
empioyed at a given range can usually be obtained from documents at the iocal
installation. A compendium of all coordinate systems used by member ranges
would produce a voluminous document of dubious value. 1In spite of being
narrow in scope, this document still manages to serve a useful purpose
through an in-depth presentation of the definitions, properties and useful
transformations associated with those coordinate systems having a general
interest to data reduction specialists at most test ranges.



IT1. GLOBAL COORDINATES

Any global coordinate system {geodetic datum) is based on an ellipsoid of
revolution whose size and shape approximate that of the entire Earth and whose
center coincides in some manner with the gravitational center of the Earth.
Examples of such systems are the Mercury Datum based on the Fischer 1960
E11ipsoid and the DOD World ~eodetic System (WGS) 1972.

Satellite and missile trajectories are relative to the Earth’s center of
gravity; therefore, range data referred to the center of gravity are the end
products for such trajectory analyses. When the sensor coverage exceeds the
extent of local or regional datums, the sites must be Jocated on a global datum
to achieve consistent geometry.

Global coordinates based on a given ellipsoid are determined by transforma-
tions from regional or local coordinate systems or from observations of a satel-
1ite whose orbit is known relative to some coordinate system. These computations
and transformations are usually assumed to lead to consistent results. However,
when it is possible to make comparisons, the results are rarely in complete
agreement. Differences in computational and orbital force field models, along
with parameter and computer characteristics, are responsible for such discrep-
ancies. Additionally, in theory, the centers of two global datum systems
should only differ by a constant; however, in practice, the difference
appears to be a function of the location of the measurements.




ITI. REGIONAL COORDINATES

A regional geodetic datum consists of an ellipsoid whose size and shape
approximate that of the particular region of the Earth. This ellipsoid is
oriented to a physical point in the region, and this point is the origin of
the regional datum. Examples of such systems and their reference ellipsoids
are the European Datum {(ED) on the International El1lipsoid of 1924, the North
American Datum (NAD) on the Clarke 1866 E1lipsoid, and the Tokyo Datum (TD) on
Bessel 1841 Ellipsoid.

Conventional surveys in a region are referenced to the datum network defin-
ing the regional system. When distance and azimuth between regional sensors
are necessary for scaling, such regional coordinates are the best computational
source. Regional coordinates may be extended to greater distances by optical
and electronic observation of a satellite. The relation between regional and
global cpordinate systems is specified by displacement between ellipsoid centers
in rectangular coordinates (AE, AF, AG) and differences in ellipsoid sizes and
shapes (Aa, Af), where a and T are semi-major axis and flattening, respectively.



IV. PARTICULAR RANGE (LOCAL) COORDINATES

These coordinate systems are usually rectangular systems whose center
(origin) and x-y plane are tangent to some convenient point on the range
(usually one of the launch pads or instrumentation sites). The coordinates
may be transformed from these local coordinates to appropriate regional coor-
dinates or global systems. These local range systems are primarily a compu-
tational convenience designed for the range configuration and mission., Such
systems are not amsnable to interrange projects or missions.




Y. DATUM TRANSFORMATIONS

Frequently, it is necessary to transform station geodetic coordinates from
one datum to another. The following information is necessary for this transfor-
mation:

ag = the semi-major axis of the reference ellipsoid of the datum from which
the transformation will occur (original datum),

—+
(o}
1]

the flattening of the reference ellipsoid of the original datum,

]

the semi-major axis of the reference ellipsoid for the datum to which
the transformation will occur (new datum),

fy = the flattening of the reference ellipsoid of the new datum, and

oE = Ey - Ep
AE = F. - F the displacement of the center
N 0 of the new datum relative to the
original
AG = Gy - Gp

The EFG system is a right-handed Cartesian system. The origin of this
system is at the geometric center of the reference ellipsoid. The coordinate
axes are oriented as follows: E and F Tie in the plane of the Equator, G
coincides with the rotational axis of the Earth and is positive through the
North Pole, E is positive through Greenwich Meridian (0° longitude}, and F is
positive to complete a right-handed system. This system rotates with the Earth
and is Earth-centered and Earth-fixed (ECEF). The fact that the various Earth-
centered systems exhibit displacement of their centers is evidence of experi-
mental error rather than disagreement in fundamental assumptions. This EFG
system will be calied the Master Coordinate System or the system in which
integration takes place.

The method of transformation consists of the following steps:

1. Calculate the geocentric Cartesian coordinates of the original
coordinates given ¢y, Ag, Hg, ag, fp, where ¢g, Ag and Hy are the
geodetic latitude, longitude and height above the reference
ellipsoid, respectively, of the point to be transformed. The
method of transformation, discussed in section VII, paragraph 7,
produces the data set (Ey, Fp, Gg).

2. Calculate the geocentric Cartesian coordinates of the new datum:

Ey = Eo + 4F
Fy = Fo + AF
GN=GO+AG
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3, Calculate ¢y, iy and H, using a,, f,, Ey, Fy, and G, as shown in section YII,
paragraph 7? N N NN N N N

The origins and ellipsoids for a few datums are

NAD 1827 ED TD
Meade's Ranch, KS Potsdam Tokyo
® 39°13'26,686"N 52°22'51.45"N 35°39'17.51"N
S 261%27'29.494"E 13°03'58.93"E 139°44'40,90"E
H 599.4M+0.3
E1lipsoid Clarke 1866 International 1924 Bessel 1841

The ellipsoid parameters of interest are

t1lipsoid a (meters) f
Clarke 1866 6378206.4 1/294.9786982
Fischer {Mercury) 1960 6378166 1/298.3
Kaula 1961 6378165 _ 1/298.3
Bessel 1841 6377397.155 1/299.1528128
© WGS 72 £378135 1/298.26
Interpational (Hayford) 1924 6378388 1/297.0
WGS 84 6378137 1/268,.257223563
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VI. TRAJECTORY COORDINATE SYSTEMS

Orbital computations involve a number of different coordinate systems
and transformation of data among these systems. These coordinate systems are
related to each other through a reference figure representing the actual Earth.
This reference figure is an ellipsoid of revolution of given dimensions whose
surface is assumed to approximate closely the mean sea level surface of the
actual Earth. It is alsoc assumed that the mass of the Earth is sufficiently
homogeneogus for its center to be taken at the geometric center of the reference
ellipsoid. In this way, the major axis of the reference ellipsoid lies in the
equatorial plane of the Earth, and the minor axis coincides with the Earth's
rotational axis.

The location and origin of a given data acquisition coordinate system are
determined by an astronomical and a geodetic survey (the Tatter of which is
based upon a specific ellipsoid). The geodetic coordinates are latitude ¢,
longitude A, and height H above the surface of the reference eilipsoid. The
geodetic Tatitude of a point, which is positive in the Northern Hemisphere,
is the angle between the equatorial plane and the geodetic vertical through
the point extended to intersect the plane of the equator. The geodetic longi-
tude of a point is an angle in the equatorial plane with its vertex at the
center of the Earth, its initial side through the Greenwich Meridian, and its
terminal side through the meridian of the point. Longitude is measured posi-
tive eastward of Greenwich. Geodetic height is measured positive up from the
surface of the reference ellipsoid along the geodetic vertical.

The astronomical coordinates are latitude ¢' and longitude A'. The astro-
nomical latitude is defined as the angle between the equatorial plane and the
astronomical vertical through the point. The astronomical vertical is defined
by the direction of gravity (plumbline) at the point. The astronomical longi-
tude is the angle between the plane containing the Greenwich Meridian and the
projection of the astronomical vertical on the eguatorial plane. The Tatitude
and longitude differences between geodetic and astronomical coordinates define
the defiection of the vertical. Astronomical coordinates define only orienta-
tion, while geodetic coordinates define orientation and location. This dis-
tinction is of importance to the transformation equations detailed in the next
section.

Prior to any orbital computation, a set of initial conditions must be
obtained if equations of motion are to be integrated. Position and velocity
are usually needed {(and ballistic coefficient and covariance matrix, if pos-
sible}. The initial conditions may be transformed to the ECEF system.

11




YII. PARTICULAR TRAJECTORY COORDINATE SYSTEMS

1. Topocentric Range Coordinate System (x, y, z, X, ¥, 2)

A topocentric Cartesian system is assumed with the x-y plane normal
to the geodetic normal determined by the origin, with geodetic coor-
dinates ¢, A and H. The xyz range system is shown in figure 1-1.
The coordinate system is right-handed with positive x pointing

east, positive y pointing north, and positive z pointing up along
the normal completing the right-handed system.

Greenwich [

Figure 1-1

If the slant range azimuth, and elevation are known, the position vector
components are

X =Rcos e sina
y = R cos £ ¢os o (1)
2 =R sin ¢

where

R is the slant range from the origin to a point with topocentric
coordinates (x,y,z),

€ is the elevation angle of the position vecior above the x-y
piane, and

¢ is the azimuth angle measured in the x-y topocentric plane from
True North to the projection of the position vector on the x-y plane.

13




If the components of the position vector x, y, Z are known, then R, o, ¢
may be determined from the following equations:

R = (x2 + y2 + 12);5 (2}

1 /x (Double Arctan)
o = tan (}-) {If = o<0, theno =g + 27) {3}

(x2 + y2)7%

In general, position and range data are the basic measurements received by
instrumentation systems that are external to a vehicie in flight. Most methods
of obtaining velocity and acceleration make use of numerically differentiated
filtered position data (expressed as a function of time). If the positicn and
velocity components are known, the range rate, azimuth rate, and elevation rate
may be computed as follows:

L XX +_§y + Z2 . S Ny (5)

e

s

- H (radians per second) (6)

Ma

= E_:,Eigiﬂl {radians per second) (7}

(x2 + y2)%

2. Geocentric Coordinate System (Master) (E, F, Gl_ﬁ, E, G)

We assume a right-handed Cartesian system located at the center of the
ellipsoid of reference with the E-F plane fixed in the equatorial plane (that
is ECEF) a2nd the G axis along the rotational axis of the Earth. E is positive
in the direction of longitude (A)= 0° and latitude {¢) = 0°. F is positive
90° counterclockwise from E, and G is positive in the direction ¢ = 90° (see
figures 2-1 and 2-2).

14




(E,F, G) or (X, ®, H)
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Prior to any transformation of topocentric coordinates, corrections for deflec-
tion from the vertical must be applied. Assuming these corrections have been
made, the transformation of position and velocity components measured in the
topocentric range system is given by

E -sin A -cos A_ O} |1 0 0 X E
) o) 0
Fl = cos A, -sin A O 0sin ¢ -cos ¢ ¥ o+ | F, (8)
11 : i
' G. | ] 0 ] ’O cos ¢, sin ¢o z G0
or
I s _ .
E { -sin Ao cos Ao sin ¢0 cos lo cos ¢0 X IEO
= -5in 3 3 § F
F cos A, -sin Aj sin ¢, sin A  cos ¢ yi o+ | F, {9)
G 0 cos ¢0 sin ¢0 z G0
The geocentric coordinates of the topocentric reference site are computed
from
£, = (NO+H0)cos ¢, cos Aq
F = (NQ+Ho)cos ¢, sin A (10)
= -p2) i
G, [No(l g2} + HO] sin ¢,

The parameter No in equation {10) is the transverse radius of curvature
given by

a.0
Ny = : (11)
('!-ezsincho)2

a_ is the semi-major axis of the reference ellipsoid,
e is the eccentricity of the reference ellipsoid,

¢ is the geodetic latitude of the reference site, positive north
of the Equator, and

A is the geodetic longitude of the reference site, positive east.
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In addition, Ho is the geodetic height of the reference site and
H0 =n+h
where n is the geoid-ellipsoid separation and h is the height of the reference

site above (or below) mean sea level.

The geocentric velocities are found from the following transformations:

Mme
X

-5 - in ¢ co
sin ko cos AO sin @0 cos lo 3 ¢0

(12)

e

F = cos A -sin A sin sin A cos
0 0 d)o 0 ¢0

e
N

0 cos ¢0 sin ¢0

or

M
b ]

where K is the matrix in equation (12).

If the geocentric coordinates of the point are known, the topocentric coor-
dinates may be found by

X E - E
Q
7
y = K F-F, (18)
z G -G
4]
17




If the topocentric coordinates are positioned so that the x axis is at some
angle from north other than 90°, the K matrix becomes

K17 %12 K3

- [

K

31 K32 Ka3

whare

~
It

1 -sin A sin a - ¢cos a cos A sin ¢,
K]z = sin A COS & -~ sin o cos A sin o,
K13 = £0S A COS 9,

K21 = ¢ps A sin o - cos o sin X sin &,
K22 = ~.c0s A Cos ¢ ~ sin o sin o sin ¢,
K23 = sgin A COS @,
K31 = €05 ¢ COS «Q,

K32 = cos ¢ sin o, and

-~
1

33 sin ¢,

where o is the angle from north to the position of the positive x axis in the
the topocentric system (see figure 2-3).

4
% - North
East

Figure 2-3
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3. Earth-Fixed Spherical Coordinate System (r, A, &, Vas Ae’ Ya)

A spherical system is assumed with the same origin as the ECEF (EFG) coor-
dinate system (see figure 3-1}. In addition, a UVW coordinate system is also
introduced. The latter is a right-handed coordinate system with U pointing east,
¥ pointing north, and W pointing along the projection of the geocentric radius r.
The U-V plane is normal to the geocentric radius (see figure 3-1).

E

Greenwich

Figure 3-1

The following parameters can now be defined in terms of these coordinate
systems:

r is the geocentric range from the center of the reference spheroid to
the point {(origin of the (UVW) coordinate system).

¢ is the declination, positive north. The declination is the angle
between the equatorial plane and the geocentric range vector.

A is the Tongitude, positive east.

v_ is the Earth-fixed total velocity.

A_is the azimuth of the velocity vector projected on the U-V plane.
The angle is measured from north to the projection of the velocity
vector. Ae is commonly called the heading.

is the elevation of the velocity vector above the U-V plane. Y, is com-
monly called the flight path angle. )

19




If the position vector components of a point in space are given in the ECEF
system, then r, X and § may be found from

r=(E2 + F2 + G2) (17)

where E, F, and G are the geocentric coordinates of the point,

-1 G
& = tan » (18)
<t52 + F2>E>
and
.. -1 (F {Double Arctan%
A = tan E {If A<0, then A= X\ + 2m) (19)

If the coordinates of the point in space are given in polar coordinates r,
A, &, the geocentric coordinates are

E=r cos & cos A
F=rcos & sin A {20)
G=r sin §

If the geocentric velocities are known, they can be transformed from the EFG
coordinate system to the UVW coordinate system with the following rotations:

Bl = A
92 = §Qg°
g3 = (90° - §)

The transformation 1is

(21)

=< a e
1l
e
e
e

20




where

1 0 0 cos 82 sin 82 0 cos e] sin e] 0

R3R2R1 = |0 cos 63 sin 83 ~s5in 82 cos 62 0 -51in 61 cos 6] 0
0 -sin 83 COoS 63 0 0 1 0 0 1

(22)

Substituting the values of Chp 62, and 8, into the R3R2R1 matrix and matrix mul-
tiplying gives '

-sin A cos A 0]
R3R2RT = -sin & cos A -sin 6 sin A cos & (23)
cos & cos A cos ¢

sin A sin & |

The result of the transformation using eguations (21) and (23) is

ﬂ = -E sin A + % cos A
V=-E sin 8 cos A - F sin & sin A + G cos & - (24)
ﬁ = é cos 8 cos A+ ﬁ cos & sin A + é sin &

The transpose of the R3R2R1 matrix is

-5in X -sin & cos A cos § cos A

(R3R2R])T - cos A _sin & sin A cos & sin A (25)

0 cos & sin §
and
E 0
- = (R R R )T .
F 37 2™ v {26)
G W
21




If the geocentric velocities (f, E, é) of the point in space are known,

v Ae, Ae may be found from the velocity components transformed to the UVW

e!
coordinate system by the use of equation {24) and the following relations:

v, = (02 + V2 + wey? (27}
0 {bouble Arctan)

A = tan" {3 (If A_ <0, then A = A_ + 27) {28)
e v e e e

Yo * tan™! L {29)

(32 + v2)*

If, on the other hand, the total velocity, heading, and flight path angle
are known in the UVW coordinate system, then

-= . 0
U= v, cos vy, sin A, {(30)
¥ = Va €OS Y, COS Ae

H=ve sin vy,

The geometiric velocities may be obtained in this case by transforming the
U, V, W to the E, F, G (ECEF) system with equation {26).

4. Cartesian Inertial Coordinate System (EI, FI’ Gy, EI' %?. éI)

In figure 4-1, an Earth-centered inertial (ECI) coordinate system is repre-
sented by EI’ FI' GI' The ECEF rotating coordinate system is represented by
E, F, G. The ECEF system is rotating about the GI(G) axis with an angular
velocity 8. (98 = Wy » the rotational rate of the Earth.} By definition, E1 is
positive toward the mean vernal equinox of date, FI is positive 90° counter-
clockwise from EI‘ and GI completes the right-handed system. EI and FI are in

the Earth's equatorial plane, and GI is positive toward the North Pole.

22
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MEAN VERNAL
EQUINOX

Figure 4-1

The inertial coordinate frame is rotated into the ECEF system as follows:

E

cos ©

-sin B

0

sin B

cos ©

0 EI
0 Fy
1 GI I

(31)

The subscript R on the lTeft-hand side of equation (31) indicates that the EFG

(ECEF) coordinate system rotates relative to the inertial {I) system.

The reverse transformation is

The

Tl e me

Gle

I

cos ©

sin &

cos 6

-51in &

-5in &

cos ©

sin 8

cos B

0 -|E
0 F
1 G
R

transformation of inertial velocities to ECEF velocities is

0 E

1Yo
0 Fp - O,
23
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The reversa transformation is

éI cos B -sin 8 0 é - éE
Fr = sin® cose 0 F o+ 6t (34) _
éI 0 0 1 &

I R

The transformation of inertial accelerations to ECEF accelerations is

[dw)
(=]
m
4
n
[wnd }
T

- . - -2
E cos B sin I - 3] EE
F = -sin3 cos & O | Foo- 28 € - B2F (35)
G |p 0 0 1 j GI I

_The reverse transformation is
EI cos 8 -sin® 0 £ - 25 F - 82
EI = sin 8 cos © 0 F+28F - 82F (36)
gGI . 0 0 1 G R

The matrix in equation (31) transforms the position data of the true of date
inertial frame to the true of date ECEF frame by rotating through the hour angle
between the frue vernal equinox and the Greenwich Meridian. This hour angie is
also known as Greenwich Apparent Sidereal Time (86). The angle 8 can be computed
from

g = GAST0 + W, (ti - tohUT} (37}

where

GASTo is the Greenwich Apparent Sidereal Time in radians at Oh Universal
Time (tOhUT) on the Julian date of the given epoch,

ti is the time of interest, and

24



e is the rotational rate of the Earth measured relative to the instan-
taneously true vernal equinox:

0.7292115855 x 10™"* radians per second

£
n

£
]

6.300388099 radians per day.

These parameters are illustrated in figure 4-2.

£ Greenwich Meridion at Oh uT
FI
\I)"-_
i [ o
GAST,
g
E°(1;)
Mean Verngl Equinox
Figure 4-2

The Greenwich Apparent Sidereal Time at Oh UT, expressed as an angle, repre-
sents the angle between the vernal equinox and the Greenwich Meridian. Assuming
that the time of interest (ti) is after midnight, the Greenwich Meridian rotates
through the angle y to E'. The angle 6 represents the Greenwich Apparent Sidereal
Time at the time ti' The Greenwich Mean Sidereal Time in hours at 0h UT on the
Julian date epoch day (JDOE) is

GMST0 (hours) = 6.67170278 + 0.0657098232 (JDO. - 2433282.5) (38)

E
MOD (GMSTO, 24)

25



The mean longitude of the ascending node of the Moon's orbit measured in
degrees at Oh Ut is -

2 Degrees) = 372.1133 - 0.0529539 (JDOE - 2433282.5) {39)
Sradians) = Q(Degreas) Tgﬁ
The equation of the equinexes ir hours is
Eo (hours) = -0.00029 sin Q {40}
The Greenwich Apparent Sidereal Time in hours at Oh ur is
GAST {(hours) = GMST0 + Eg (41)
GAST0 in radians is

GAST0 {radians) = GAST0 (hours) 53 {42)

The angle © required for transforming inertial coordinates to ECEF is

eé{radians} = GASTO + 6.300388099 (t_I - tohUT) {(43)
Mod (8, 27)
where
: . _ 6 6
ti - tohUT = (JD - 2.4 x 10°) - (JDOE - 2.4 x 10%)

and JDOE is the Julian date {JD) at DhUT on the day of the epoch (JD is the
Julian date of the time of interest). The Julian date is a continuous count
of the days and fractions of days from 1 January 4713 B.C., Greenwich Mean

Noon (=12hUT). The Jb for t. may be computed as follows:

26




367K - 41% (K +< (M+ 9)/1%£E> (44)
+ é?—% + 1 +1721013.5

UT/24 - 0.5 sign (100K + M - 190002.5)

D (t;)

+

+ 0.5
where

K is the year (1801 < K < 2099},

M is the month (1 <M < 12},

I is the day of the month (1 < I < 31),
UT is the Universal Time in hours,

< > js the integer function, and

sign is the sign function.

For example, 1978, January 1, O" UT = 2443509.5 JD, and

h

1877, August 11, 7 30" UT = 2406842.8125 JD

5. Spherical Inertial Coordinate System (r, w, &, Vis AI, Yi» BI)

A spherical system is assumed with the origin the same as the ECI (EI, FI’
GI).coordinate system. This coordinate system is right-handed with EI positive
toward the mean vernal equingx of date, FI ap° counterc]ockwise from EI, and GI
coincident with the Earth's rotational axis and positive toward the North Pole

(see figure 5-1).
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YERNAL EQUINOX

Figure 5-]

A coordinate system designated UI’ V., HI, is also shown in figure 5-1.
This coordinate system is right-handed with UI pointing east, VI pointing

north, and HI pointing along the projection of the geocentric radius r. The

(U-V)I piane is normal to the geocentric radius. The following definitions

apply to the parameters used in conjunction with the Spherical Inertial Coordi-
nate System:

By

If
system,

is the gedcentric range from the center of the Earth to the point
(origin of the (UW)I coordinate system).

is the declination, positive north. The declination is the angle
between the equatorial plane and the range vector.

is the right ascension measured positive east from the vernal
equinox of date.

is the azimuth of the velocity vector projected on the (U—V)I
plane.

is the elevation of the velocity vector above the (U-V)I plane.
is the angle between the range vector and the velocity vector.

the position vector components of a point in space are given in the ECI
then r, o, 8§ may be found from the following:

r= (£ + F2 + 633 (45)
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1 {F (Double Arctan)

a = tan ) (If o< 0, then o = o + 27) (46)

I
G
§ = 'l'.ill’l-1 —2—-;-"2—; (47)
2
(ET + FT)
where
EI’ FI’ and G1 are geocentric inertial coordinates of the point.

When the coordinates of the point in space are given in polar coordinates {r,
o, 8), the geocentric coordinates are

EI =r cos § cos o (48}
FI =prcos § 5in o
GI =r sin &

If the geocentric inertial velocities are known, they can be transformed
from the ECI, (EFG)I system to the (UVN)I coordinate system with the following
rotations:

61 = Q

= °
82 a0
83 = {90-8)

Substituting the above angles into equation {22) gives

-sin o Cos o 0 E
(R3R2R1)I = |-sin d cos ¢ -5in 8 sina cos & | (49)
|
|
cos § COs o cos & sina  sin &

The transformation is

e
zal]
—

-<Za
n
—~—
=l
(%]
A
~N
=
—1
Nt

(50)

e
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or

-EI sin o + FI COo5 o

-
=

= 'éI sin & CoS o - Fr 5in § sin o + GI cos &

EI cos & cos o + ﬁI cos 8§ sin o + él sin &

(51}

The transformed velocities may be used to find the total velocity (v ) as

well as AI, Yio BI from the following equations (see figure 5-2):

1

™ - - 1.
= (112 2 4 w2y?
(UI + VI wI)
. tan”! UL\ (Double Arctan)
g (1f A, < 0, then A, = A, + 27)
VI 1 1 i
W
= tan-l - I.2 i,
2 a ‘2
(02 + ¥3)
= o .
= 90 Y1
GI VI
3 W,
7
B
I €k
&
r ‘0/;
%
- E1.F! plane
Figure 5-2
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If, on the other hand, Vi AI, and BI are known, then

=
—
{

= Vi sin BI sin AI
Vi = vy sin By cos A (56)
ﬁI = -V €OS BI

or
ﬂI = vy €os v sin AI
GI = vy Cos Yy cos A (57)
QI = vy sin Yy

In this case, the geocentric inertial velocities may be obtained with the
following matrix transformations: .

B Y1
F = (R,R,R )T ﬁ (58)
I 3RaRy I I
Gy Wy

6. Satellite Orbital Elements System (Q, w, i, a, e, M)

At any instant, the position and motion of an artificial satellite, in
earth-centered inertially fixed coordinates, can be described by the rectangular
components of position (EI, FI, GI) and velocity (EI, FI’ GI). The satellite's

posﬁtion at a given time can also be described by six elements of the Keplerian
ellipse (Q, w, i, a, &, M}). Three of these elements specify the spacial posi-
tion of the orbital plane, two give the size and shape of the orbit, and the
sixth relates orbital position to time. These elements are defined as follows:
2 is the right ascension of the ascending node.
w is the argument of perigee.

i is the inclination of the plane of the orbit with respect to the equa-
torial plane. '

a is the semi-major axis of the elliptical orbit.
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e is the eccentricity of the elliptical orbit.
M is the mean anomaly.
€ is the eccentric anomaly.

EI‘ FI’ GI’ are the inertial geocentric coordinates of the satellite.

EI’ FI’ éI’ are the inertial geocentric velocities components of the
satellite.

Figure 6-1 indicates the coordinate system discussed in this section.
Figure 6-2 shows the relationship of the position of a sateliite in its ellip-
tical orbit and its projection onto an auxiliary circle (dotted line). The
symbols X, and Y, are orbital plane coordinates, ¢ is the eccentric anomaly
that is measured in the orbital plane from perigee to S', f is the true ancmaly
{not to be confused with flattening), and ¢ is the radius from the center of
the Earth to the sateliite.

Gy
4

apse

perigee

\R\‘“-—-ascending node

Figure 6-1
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Figure 6-2

The coordinates of S5 with respect to the origin of the (EFG)I coordinate
system are

p cos f

X =

w
Y =osinf (59)
Z =0

w

The orbital coordinates of S expressed as a function of the eccentric
anomaly are

Xm = a (cos e - e)
Y,=a (- e2)% sin ¢ ' (60)
Z =0
w
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The orbital velocities are

% a -sin ¢ u\ 2

w {T-e cos €) a

v (1-e2)% cos £ i

Yo © { (T=e cos ) a ) (61)
Z =0

W

where
1 is the gravitational constant and

£ 1s the eccentric anomaly, which must be obtained by
a2 solution of

M=2¢-~esine {(62)

The equation is usually solved by iteration., The first approximation cf
E 15

gy = M+esinM+ %-ez sin 2M

Then
M) = g, - e sin g (63)
My = M- M
oM,
AE} = )

(1-e cos €14
Add the AE1 to € to give €s- Repeat until Mn = M,

The transformation from orbital coordinates to inertial geocentric coor-
dinates is

EI cos & -sin @ O 1 0 a cos w -s5in w 0 xw
FI =:8in 2 cosf O 0 cos i =-sin i sin W  cos w 0 Ym
Gy 0 0 1 0 sin i cos i 0 0 1 Zuj
(64)
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where
P

P12

P13

ol
121

Pay

Pag

Py

P32

Pa3

I P11 Pr2
Fil = IP» Poz
G P31 P32

CosS w €o0s & -sin w sin Q cos 1,
-sin wcos € -cos w sin 2 cos 1,
sin @ sin 1,

¢os w sin & +sin wcos R cos 1,
-sin w sin 2 + cos w cos © cos 1,
-cos 2 sin 1,

sin Q sin i,

cos w sin i, and

= ¢cos 1.

13

23

33

-

e

(65)

Calling the above matrix the P matrix, the transformation from orbital veloci-
ties to inertial geocentric velocities is

Ey
3 = p

Gy

(66)

Assuming that the position and velocity vectors exist in the ECI system,

the orbital elements (Q, w, i, a, e, M) can be determined.

of the elliptical orbit is

a = L8
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where

r= (Ef + FZ2 + G%)% and, (68)
- - - 1.
= z =2 Z2Y'2
v; = (E2 + F2 + G2) (69)
Next, calculate the angular momentum vector-t:
toTad (70)
along with
L, = FIGI - GIFI
zy = G - E(6 (71}
%, = EfFy - FiEy

-+ -+
The parameter 2 defines a unit vector in the direction of L with components

{
lx/L, Qy/L and RZIL, (72)

vhere
- (02 2 2%
L (zx + P.y + £Z.) .

Rotating the position coordinates through @ and i produces

£ 1 0 0 cos @ sin Q 0 £y
F'i = {0 cos i sin i -sin @ cas 92 0 FI (73)
G' 0 -5in i cos i ] 4] 1 GI
E’ cos §I sin @ 4] EI
F! = -cos i sin Q cos i cos & sin i FI (78)
G* sin 1 sin @ -sin i cos Q cos i GI
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Solving for G' gives

@' = (sin i sin Q) EI + {~sin i cos Q) FI + {cos 1) GI (75)

Equating the Tike expressions for & and G~ gives

QX/L = sin i sin Q
2y /L = -sin i cos @ (76)
1/L = cos i

Solving for @ from the above expressions gives

2
Y

9]

a1 % {Double Arctan)
tan (If @ <0, then @ = @ + 2m) (77)

: 22 + 92)°
tan-' _(_X___:&)

n
A

i

—
1}

. (78)

The eccentricity (e) can be calculated from standard formulas involving the
semi-major axis and flattening or the semi-major and semi-minor axes of the
ellipse. The eccentric anomaly (g) then follows as

-]

S : = . s

. L
_ -1 {rre(pa)®y} _ -1 |e sin ¢
€ = tan (:ﬂa—ri = tan ecos e| (81)

The term ¢ is the magnitude of the radial component of velocity. Often

e Co0Ss £

this quantity is not readily available; however, the radius vector (¥) and the
total inertial velocity vector (:I) are %enera11y available. When this is the
case, the term r r can be replaced by F';I (dot product) in equation (81). In
any event, the term r should not be confused with Vi- Finally, compute the mean
anomaly as

M=¢c - e sin e. (82)
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To determine the argument of perigee (w) find the angle between the Tine
of nodes and the satellite position measured in the orbital plane &.

From equation (74)

EI

il

E; cos @+ F; sin @ (83)

F! -EI cos i sin Q@ + FI cos 1 cos @1 + GI sin i

<
1

= tan

-1 /F'\ (Double Arctan)
E'Y/ (1f B<0, then § = 8 + 2%) (84}

Now find the true anomaly (f), the angle between perigee and the satellite
position:

o 2 sin £
£ =2 tan - (1 b e) g (Double Arctan) (85)
2

or

y f LEEL i+ 616;)\ (Double Arctan)

f = tan” (If f < 0, then f = f + 2x) (86)

Now finally
w=8-F {(Ifw<0, thenw = w + 27) (87)
It is advisable to exercise due care in determining the quadrants of the
angular quantities w. 9, and f. A way of making this determination is to com-

pute both the sine and cosine value for a given angle.

7. Geodetic Coordinate System (1, &, H)

The geodetic coordinate system is related to the geocentric coordinate
system as shown in figure 7-1. The geodetic Tatitude (¢} is the angle between
the geodetic Equator and the geodetic Tine that is normal to the surface of the
ellipsoid at any point. The geodetic Tatitude is positive in the northern half
of the hemisphere. The geodetic longitude (A) of a point is measured positive
to the east of the Greenwich Meridian. The angle is measured in the E~F plane
between the zero meridian plane and the gecdetic meridian plane of the point.
Both planes contain the minor axis of the reference ellipsoid.
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G (E,F,G)or (X, %, H)

E

Greenwich
Meridian

Figure 7-1

The geocentric coordinates of a point in space may be obtained from the
geodetic coordinates as follows:

E =(N+ H) cos & cos A
F=(N+H) cos ¢ sin A (88)
G =[N (1-e2) + H] sin o,

where N is the radius of curvature in the prime vertical

= a 89
N (1-e2 sin 8)% (89)

In this relation, a and e are the semi-major axis and eccentricity, respec-
tively, for the reference ellipsoid.
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If the geocentric coordinates are known, the reverse information is

5 = tan™t F\ (Double Arctan)
Ef (If » <0, then A = X + 27n) {90}

Latitude is obtained by Newton's iterative method as follows:

- ar} 7! {
b4 = 05 - (aeb) ; (o1
where -
"
2 2 2y
fj = a€ — - (ECD: ; ): . sinG¢ and (92)
(1-e2 sinZ ¢j)2 J J
Ba cin o _ 2 2 2V ein o’ G COS O,
o _ eta sin ¢J cos ¢J i (E F2)2 sin ¢J Ll i . (93)
/5 (1-e? sin2 )02 cos? ¢, 1% 85
For j = 1

6. = tan ' (?——-£1-{> (94)
J {(1-e2) D

. =1 -
The spolution is complete when “fj (—‘%) is < 10722 radians. Then

1
where D = (E2 + F2)7% .,

]
2 2] 2 53
H= 2 {D-Ds) + (G = ss) (95)
where
DS = N cos ¢& and {96)

G =N (1-e2) sin ¢.

To resolve the amb.guity in sign, compute

B =D, (D-DS) + G (G—Gs) {97)
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The sign in the computed value of B is then assigned to H. As an alternative,
H can be computed as

H=1[D2 4+ (G +e2 N sin q:)z}lé - [Dg + (N sin q:)zjt’2 {98)

This expression yields the sign of H directly as part of the computation.

8. Summary of Trajectory Coordinate Systems

Figure 8-1 depicts the relationships of the trajectory coordinate systems
defined in section VII.

{1) Range System
Xy ¥y 2
Xy ¥» 2

(2) ECEF Geocentric

(3) gCEF 2l (Master) (7) Geodetic
pherica | E, F, G — 'L e H
AR E, F, G
(4) ECI
\ i - .
Spherical . ribta
«—>»  Ep, Fp, G > _
r, o. & . - . Q, wy 1, a, e, M
T E,, F;, G
I* "I1* V1
Figure 8-1
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YIII, RCC RECOMMENDATIONS AND PROCEDURES

The Range Commanders Council adopts and recommends for interrange use the
Geodetic Datum and Global Coordinate System described below,

a. For the exchange of data among ranges on missions where interrangs
actien is required, emplioy the Department of Defense World Geodetic System 1984,
with the tollowing ellipsoid definitions:

WGS 84 ELLIPSOID

STANDARD ERROR

PARAMETERS NOTATION MAGNITUDE (68.27%)
Gravitationalls EM 398600.5 km3/s2 +0.06
Constant
Second Degree* Eé 0 -484.16685 x 1076 +1.30 x 1079
Zonal !
Angular Velocity2, wg 0.7292115 x 1073 +0.1500 x 10711
rad/s
Angular Velocityds o 0.72921158553 x 100 +0.1500 x 10711
€ +4.3(10-15 T ) rad/s
Gravitationald am- 398600.15 knr /s? 40,6
Constant
Semi-ma jor Axis* a 6378137 m #2m
Flattening (Ellipticity) f 1/298.257223563 = —==--
(0.00335281066474)
First eccentricity e 0.0818191908426
e? 0.00669437999013

*Defining parameters of WGS 84 El1lipsoid (see reference 1).

l1contains the mass of the Earth's atmosphere {(for use with satellite and space
studies).

2IAG adopted value for the true angular velocity of the earth.

3Relative to the instantancous true equinox; Tu = Julian Centuries from Epoch
J2000. ' :

4Exc]uding atmosphere (for use with geodetic computations involving the normal
potential).
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b. Transformation constants for shiffing'from three regional datums tg the

WG5S 84 Datum are given below. The unclassified regional datum shifts 1i{sted are
taken from reference 1.

TRANSFORMATION E{m) Fim) G({m) a{m) f x 10

North American¥* -8 164 176 -69.4 -0.37264639
Datum (NAD} 27
Area to WGS5-84

European Datum (ED) -87 ~98 -121 ~251 -0.14192702
1950 (International)
Area to HGS-84

Tokyo Datum (TD) ~128 481 664 739,845 0.10037483
{Bessel)

Area to WGS-84

*Wean Value (CONUS).
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